7. Stochastic Orders

Duarte Gonçalves

University College London

MRes Microconomics

So far: risk attitudes, i.e., patterns of individual behaviour in choices involving risk

So far: risk attitudes, i.e., patterns of individual behaviour in choices involving risk

This lecture: know how to rank lotteries/distributions in unambiguous manner among groups of individuals.

1. Rank distributions *F* and *G* s.t. every EU maximiser (with monotone *u*) would agree. (e.g., everyone would agree £2 for sure is better than £1 for sure)

So far: risk attitudes, i.e., patterns of individual behaviour in choices involving risk

This lecture: know how to rank lotteries/distributions in unambiguous manner among groups of individuals.

- 1. Rank distributions F and G s.t. every EU maximiser (with monotone u) would agree. (e.g., everyone would agree £2 for sure is better than £1 for sure)
- 2. Rank distributions according to 'riskiness', i.e., s.t. every risk-averse EU maximiser would agree.

So far: risk attitudes, i.e., patterns of individual behaviour in choices involving risk

This lecture: know how to rank lotteries/distributions in unambiguous manner among groups of individuals.

- 1. Rank distributions F and G s.t. every EU maximiser (with monotone u) would agree. (e.g., everyone would agree £2 for sure is better than £1 for sure)
- 2. Rank distributions according to 'riskiness', i.e., s.t. *every* risk-averse EU maximiser would agree.

(Is 2 stronger or weaker than 1?)

- 1. Stochastic Orders
- 2. Setup
- 3. First-Order Stochastic Dominance
- 4. Monotone Likelihood Ratio Order
- 5. Second-Order Stochastic Dominance
- 6. Background Risks
- 7. More

1. Stochastic Orders

2. Setup

- 3. First-Order Stochastic Dominance
- 4. Monotone Likelihood Ratio Order
- 5. Second-Order Stochastic Dominance
- 6. Background Risks
- 7. More

Setup

- Outcome space: $X \subseteq \mathbb{R}$
 - $x \in X$: DM's final wealth.
- Cumulative Probability Distributions Function F

 $F: \mathbb{R} \to [0,1]$ s.t. F is nondecreasing, right-continuous, $\lim_{x \to -\infty} F(x) = 0$, and $\lim_{x \to \infty} F(x) = 1$ with support on X, i.e. $\mathbb{P}_F(X) = \int_X dF(x) = 1$.

Expectation Operator: $\mathbb{E}_{\mathcal{F}}[\cdot]$

• \mathcal{F} : set of all cumulative probability functions on X

- 1. Stochastic Orders
- 2. Setup
- 3. First-Order Stochastic Dominance
- 4. Monotone Likelihood Ratio Order
- 5. Second-Order Stochastic Dominance
- 6. Background Risks
- 7. More

Ranking of distributions s.t. every EU maximiser agrees:

Definition

A distribution F **first-order stochastically dominates** (FOSD) a distribution G, denoted by $F \geq_{FOSD} G$ iff, for all nondecreasing functions $u: X \to \mathbb{R}$, $\mathbb{E}_F[u] \geq \mathbb{E}_G[u]$.

Ranking of distributions s.t. every EU maximiser agrees:

Definition

A distribution F **first-order stochastically dominates** (FOSD) a distribution G, denoted by $F \geq_{FOSD} G$ iff, for all nondecreasing functions $u: X \to \mathbb{R}$, $\mathbb{E}_F[u] \geq \mathbb{E}_G[u]$.

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Ranking of distributions s.t. every EU maximiser agrees:

Definition

A distribution F first-order stochastically dominates (FOSD) a distribution G, denoted by $F \geq_{FOSD} G$ iff, for all nondecreasing functions $u: X \to \mathbb{R}$, $\mathbb{E}_F[u] \geq \mathbb{E}_G[u]$.

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Remarkably simple characterisation of such strong property!

Theorem

 $\forall F,G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

- \Longrightarrow :
 - $\forall a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{\{X \geq a\}}$; $\mathbf{1}_A = \mathbf{1}$ if A is true, and 0 if ow.
 - u_a nondecreasing $\forall a \in \mathbb{R}$.

Theorem

 $\forall F,G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

- \Longrightarrow :
 - $\forall a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{\{x \geq a\}}$; $\mathbf{1}_A = \mathbf{1}$ if A is true, and 0 if ow.
 - u_a nondecreasing $\forall a \in \mathbb{R}$.

$$F \geq_{FOSD} G \implies \mathbb{E}_F[u_a] \geq \mathbb{E}_G[u_a] \ \forall a \in \mathbb{R}$$

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

- \Longrightarrow :
 - $\forall a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{\{x > a\}}$; $\mathbf{1}_A = \mathbf{1}$ if A is true, and 0 if ow.
 - u_a nondecreasing $\forall a \in \mathbb{R}$.

$$F \geq_{FOSD} G \implies \mathbb{E}_F[u_a] \geq \mathbb{E}_G[u_a] \ \forall a \in \mathbb{R}$$

$$\iff \int_X u_a(x)dF(x) \ge \int_X u_a(x)dG(x) \ \forall a \in \mathbb{R}$$

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

- \Longrightarrow :
- $\forall a \in \mathbb{R}$, define $u_a(x) := 1_{\{x > a\}}$; $1_A = 1$ if A is true, and 0 if ow.
- u_a nondecreasing $\forall a \in \mathbb{R}$.

$$F \geq_{FOSD} G \implies \mathbb{E}_{F}[u_{a}] \geq \mathbb{E}_{G}[u_{a}] \ \forall a \in \mathbb{R}$$

$$\iff \int_{X} u_{a}(x)dF(x) \geq \int_{X} u_{a}(x)dG(x) \ \forall a \in \mathbb{R}$$

$$\iff \int_{X} 1dF(x) \geq \int_{X} 1dG(x) \ \forall a \in \mathbb{R}$$

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

 \Longrightarrow :

- $\forall a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{\{x > a\}}$; $\mathbf{1}_A = \mathbf{1}$ if A is true, and 0 if ow.
- u_a nondecreasing $\forall a \in \mathbb{R}$.

$$F \geq_{FOSD} G \implies \mathbb{E}_{F}[u_{a}] \geq \mathbb{E}_{G}[u_{a}] \ \forall a \in \mathbb{R}$$

$$\iff \int_{X} u_{a}(x) dF(x) \geq \int_{X} u_{a}(x) dG(x) \ \forall a \in \mathbb{R}$$

$$\iff \int_{x \geq a} 1 dF(x) \geq \int_{x \geq a} 1 dG(x) \ \forall a \in \mathbb{R}$$

$$\iff 1 - F(a) \geq 1 - G(a) \ \forall a \in \mathbb{R}$$

$$\iff F(a) \leq G(a) \ \forall a \in \mathbb{R}.$$

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

← : A small detour

We'll use a result in statistics called the inverse transform method.

Definition

 $\forall F \in \mathcal{F}$, the **generalised inverse** (or **quantile function**) is given by $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \geq \tau\}, \forall \tau \in (0, 1).$

Definition

 $\forall F \in \mathcal{F}$, the **generalised inverse** (or **quantile function**) is given by $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \geq \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Definition

 $\forall F \in \mathcal{F}$, the **generalised inverse** (or **quantile function**) is given by $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \ge \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Simulating uniform rv is convenient and computationally efficient \implies computationally efficient way of simulating any rv!

Definition

 $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \geq \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Proof

WTS $\mathbb{P}(Q_F(U) < x) = F(x)$.

(1)
$$Q_F$$
 is nondecreasing:

F is nondecreasing $\implies \forall \tau' \geq \tau, \{x \in \mathbb{R} \mid F(x) \geq \tau'\} \subseteq \{x \in \mathbb{R} \mid F(x) \geq \tau\} \implies$ $Q_{E}(\tau) < Q_{E}(\tau')$.

Definition

 $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \geq \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Proof

WTS $\mathbb{P}(Q_F(U) < x) = F(x)$.

(1) Q_F is nondecreasing:

$$\chi_F$$
 is nondecreasing. $\Rightarrow \forall \tau' \geq \tau, \{x \in \mathbb{R} \mid F(x) \geq \tau'\} \subseteq \{x \in \mathbb{R} \mid F(x) \geq \tau\} \Rightarrow 0$

$$Q_F(\tau) < Q_F(\tau')$$
.

(2) $Q_E(F(x)) < x : \forall Q_E(F(x)) = \min\{y : F(y) = F(x)\} \text{ and } x \in \{y : F(y) = F(x)\}.$

Definition

 $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \ge \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Proof

WTS $\mathbb{P}(Q_F(U) \leq x) = F(x)$.

- (1) Q_F is nondecreasing:
 - *F* is nondecreasing $\implies \forall \tau' \geq \tau$, $\{x \in \mathbb{R} \mid F(x) \geq \tau'\} \subseteq \{x \in \mathbb{R} \mid F(x) \geq \tau\} \implies Q_F(\tau) < Q_F(\tau')$.
- (2) $Q_E(F(x)) < x : \forall Q_E(F(x)) = \min\{y : F(y) = F(x)\}\ \text{and } x \in \{y : F(y) = F(x)\}.$
- (3) Take $\tau \in (0,1), x \in \mathbb{R} : \tau < F(x)$. Then,

$$\tau < F(x) \implies Q_F(\tau) = \min\{y \in \mathbb{R} \mid F(y) \geq \tau\} \leq \min\{y \in \mathbb{R} \mid F(y) \geq F(x)\} = Q_F(F(x))$$

Definition

 $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \ge \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Proof

WTS $\mathbb{P}(Q_F(U) \leq x) = F(x)$.

- (1) Q_F is nondecreasing:
 - F is nondecreasing $\implies \forall \tau' \geq \tau$, $\{x \in \mathbb{R} \mid F(x) \geq \tau'\} \subseteq \{x \in \mathbb{R} \mid F(x) \geq \tau\} \implies Q_F(\tau) < Q_F(\tau')$.
- (2) $Q_F(F(x)) \le x :: \forall Q_F(F(x)) = \min\{y : F(y) = F(x)\} \text{ and } x \in \{y : F(y) = F(x)\}.$
- (3) Take $\tau \in (0,1), x \in \mathbb{R} : \tau < F(x)$. Then,

$$\tau < F(x) \implies Q_F(\tau) = \min\{y \in \mathbb{R} \mid F(y) \ge \tau\} \le \min\{y \in \mathbb{R} \mid F(y) \ge F(x)\} = Q_F(F(x)) \le x.$$

Definition

 $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \geq \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Proof

WTS $\mathbb{P}(Q_F(U) \leq x) = F(x)$.

$$VVIS \Gamma(Q_F(U) \leq X) - \Gamma(X).$$

(1) Q_F is nondecreasing. (2) $Q_F(F(x)) \le x$. (3) $\tau < F(x) \implies Q_F(\tau) \le Q_F(F(x)) \le x$.

(4) As
$$Q_F(\tau) \le x \implies \tau \le F(x)$$
 (Q_F nondecreasing), then

$$\{U < F(x)\} \subseteq \{Q_F(U) \le x\} \subseteq \{U \le F(x)\}$$

Definition

 $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \geq \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Proof

WTS $\mathbb{P}(Q_F(U) \leq x) = F(x)$.

(1) O is pendegrassing (2) O (
$$\Gamma(v)$$
) $\leq v$ (2) $= \epsilon \Gamma(v)$

(1) Q_F is nondecreasing. (2) $Q_F(F(x)) \le x$. (3) $\tau < F(x) \implies Q_F(\tau) \le Q_F(F(x)) \le x$.

(4) As
$$Q_F(\tau) \le x \implies \tau \le F(x)$$
 (Q_F nondecreasing), then

$$\{U < F(x)\} \subseteq \{Q_F(U) \le x\} \subseteq \{U \le F(x)\}$$

$$\iff \mathbb{P}(U < F(x)) \le \mathbb{P}(Q_F(U) \le x) \le \mathbb{P}(U \le F(x))$$

Definition

 $Q_F(\tau) := \min\{x \in \mathbb{R} \mid F(x) \ge \tau\}, \forall \tau \in (0, 1).$

Proposition (Inverse Transform Sampling)

Let $F \in \mathcal{F}$ and $X \sim F$. Then, $X \stackrel{d}{=} Q_F(U)$, where $U \sim \text{Unif}(\mathbf{0}, \mathbf{1})$.

Proof

WTS
$$\mathbb{P}(Q_F(U) \leq x) = F(x)$$
.

(1) Q_F is nondecreasing. (2) $Q_F(F(x)) \le x$. (3) $\tau < F(x) \implies Q_F(\tau) \le Q_F(F(x)) \le x$.

(4) As
$$Q_F(\tau) \le x \implies \tau \le F(x)$$
 (Q_F nondecreasing), then

$$\{U < F(x)\} \subseteq \{Q_F(U) \le x\} \subseteq \{U \le F(x)\}$$

$$\iff \mathbb{P}(U < F(x)) \le \mathbb{P}(Q_F(U) \le x) \le \mathbb{P}(U \le F(x))$$

$$\iff$$
 $F(x) \le \mathbb{P}(Q_F(U) \le x) \le F(x)$.

Theorem

 $\forall F,G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

Theorem

 $\forall F,G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

$$F(x) \leq G(x), \ \forall x \in X \implies (F(x) \geq \tau \implies G(x) \geq \tau)$$

Theorem

 $\forall F,G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

$$F(x) \le G(x), \ \forall x \in X \implies (F(x) \ge \tau \implies G(x) \ge \tau)$$
$$\implies \{x \in X \mid F(x) \ge \tau\} \subseteq \{x \in X \mid G(x) \ge \tau\}$$

Theorem

 $\forall F,G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

$$F(x) \leq G(x), \ \forall x \in X \implies (F(x) \geq \tau \implies G(x) \geq \tau)$$

$$\implies \{x \in X \mid F(x) \geq \tau\} \subseteq \{x \in X \mid G(x) \geq \tau\}$$

$$\implies Q_F(\tau) \geq Q_G(\tau).$$

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

$$F(x) \le G(x), \ \forall x \in X \implies (F(x) \ge \tau \implies G(x) \ge \tau)$$

$$\implies \{x \in X \mid F(x) \ge \tau\} \subseteq \{x \in X \mid G(x) \ge \tau\}$$

$$\implies Q_F(\tau) \ge Q_G(\tau).$$

$$F(x) < G(x), \ \forall x \in X \implies Q_F(\tau) > Q_G(\tau), \ \forall x \in (0, 1)$$

$$F(x) \le G(x), \ \forall x \in X \implies Q_F(z) \ge Q_G(z), \ \forall z \in (0,1)$$

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

$$F(X) \le G(X), \ \forall X \in X \implies (F(X) \ge \tau \implies G(X) \ge \tau)$$

$$\implies \{X \in X \mid F(X) \ge \tau\} \subseteq \{X \in X \mid G(X) \ge \tau\}$$

$$\implies Q_F(\tau) \ge Q_G(\tau).$$

$$F(x) \le G(x), \ \forall x \in X \implies Q_F(z) \ge Q_G(z), \ \forall z \in (0, 1)$$

 $\implies u(Q_F(z)) > u(Q_G(z)), \ \forall z \in (0, 1)$ as u nondec

$$\Rightarrow$$
 $u(Q_F(z)) \ge u(Q_G(z))$, $\forall z \in (0,1)$ as u nonde

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

$$F(x) \leq G(x), \ \forall x \in X \implies (F(x) \geq \tau \implies G(x) \geq \tau)$$

$$\implies \{x \in X \mid F(x) \geq \tau\} \subseteq \{x \in X \mid G(x) \geq \tau\}$$

$$\implies Q_F(\tau) \geq Q_G(\tau).$$

$$F(x) \leq G(x), \ \forall x \in X \implies Q_F(z) \geq Q_G(z), \ \forall z \in (0, 1)$$

$$\implies u(Q_F(z)) \geq u(Q_G(z)), \ \forall z \in (0, 1) \qquad \text{as } u \text{ nondec}$$

$$\implies \int_{[0, 1]} u(Q_F(z))dz \geq \int_{[0, 1]} u(Q_G(z))dz$$

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

$$F(x) \leq G(x), \ \forall x \in X \implies (F(x) \geq \tau \implies G(x) \geq \tau)$$

$$\implies \{x \in X \mid F(x) \geq \tau\} \subseteq \{x \in X \mid G(x) \geq \tau\}$$

$$\implies Q_F(\tau) \geq Q_G(\tau).$$

$$A_F(x) \leq X \implies Q_F(x) \geq Q_G(x), \ \forall x \in X \implies Q_F(x) \geq Q_G(x)$$

$$\begin{split} F(x) &\leq G(x), \ \forall x \in X \implies Q_F(z) \geq Q_G(z), \ \forall z \in (\mathbf{0},\mathbf{1}) \\ &\implies u(Q_F(z)) \geq u(Q_G(z)), \ \forall z \in (\mathbf{0},\mathbf{1}) \qquad \text{as } u \text{ nondec} \\ &\implies \int_{[\mathbf{0},\mathbf{1}]} u(Q_F(z)) dz \geq \int_{[\mathbf{0},\mathbf{1}]} u(Q_G(z)) dz \\ &\iff \int_X u(x) dF(x) \geq \int_X u(x) dG(x) \qquad \text{inverse transform sampling} \end{split}$$

First-Order Stochastic Dominance

Theorem

 $\forall F, G \in \mathcal{F}, F \geq_{FOSD} G \iff \forall x \in X, F(x) \leq G(x).$

Proof

 \Leftarrow : Back to characterising FOSD. Fix u, define quantile functions Q_F and Q_G .

$$F(x) \leq G(x), \ \forall x \in X \implies (F(x) \geq \tau \implies G(x) \geq \tau)$$

$$\implies \{x \in X \mid F(x) \geq \tau\} \subseteq \{x \in X \mid G(x) \geq \tau\}$$

$$\implies Q_F(\tau) \geq Q_G(\tau).$$

$$\Rightarrow Q_F(\tau) \geq Q_G(\tau).$$

$$F(x) \leq G(x), \ \forall x \in X \ \Rightarrow Q_F(z) \geq Q_G(z), \ \forall z \in (0,1)$$

$$\Rightarrow u(Q_F(z)) \geq u(Q_G(z)), \ \forall z \in (0,1) \quad \text{as } u \text{ nondec}$$

$$\Rightarrow \int_{[0,1]} u(Q_F(z))dz \geq \int_{[0,1]} u(Q_G(z))dz$$

$$\Leftrightarrow \int_X u(x)dF(x) \geq \int_X u(x)dG(x) \quad \text{inverse transform sampling}$$

$$\Leftrightarrow \mathbb{E}_F[u] \geq \mathbb{E}_G[u].$$

Overview

- 1. Stochastic Orders
- 2. Setup
- 3. First-Order Stochastic Dominance
- 4. Monotone Likelihood Ratio Order
- 5. Second-Order Stochastic Dominance
- 6. Background Risks
- 7. More

Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete support with pmf f

Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete support with pmf f

Definition

Let $F,G\in\mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. F monotone likelihood ratio dominates G ($F\geq_{MLR} G$) iff f(x)/g(x) is nondecreasing in x.

Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete support with pmf f

Definition

Let $F,G \in \mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. F monotone likelihood ratio dominates G ($F \ge_{MLR} G$) iff f(x)/g(x) is nondecreasing in x.

Proposition

Let $F,G\in\mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. $F\geq_{MLR} G\implies F\geq_{FOSD} G$.

Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete support with pmf f

Definition

Let $F,G \in \mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. F monotone likelihood ratio dominates G ($F \ge_{MLR} G$) iff f(x)/g(x) is nondecreasing in x.

Proposition

Let $F,G\in\mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. $F\geq_{MLR} G\implies F\geq_{FOSD} G$.

Proof

(1)
$$f(x)g(y) \ge f(y)g(x) \ \forall x \ge y \implies (a) \ f(x)G(x) - F(x)g(x) \ge 0$$
 and (b) $(1 - F(x))g(x) - f(x)(1 - G(x)) \ge 0 \ \forall x$.

Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete support with pmf f

Definition

Let $F,G \in \mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. F monotone likelihood ratio dominates G ($F \ge_{MLR} G$) iff f(x)/g(x) is nondecreasing in x.

Proposition

Let $F,G\in\mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. $F\geq_{MLR} G\implies F\geq_{FOSD} G$.

Proof

(1)
$$f(x)g(y) \ge f(y)g(x) \ \forall x \ge y \implies (a) \ f(x)G(x) - F(x)g(x) \ge 0$$
 and
(b) $(1 - F(x))g(x) - f(x)(1 - G(x)) \ge 0 \ \forall x$.

(2) Note (a)
$$f(x)G(x) - F(x)g(x) \ge 0 \implies \frac{f(x)}{g(x)} \ge \frac{F(x)}{G(x)}$$
 and

(b)
$$(1 - F(x))g(x) - f(x)(1 - G(x)) \ge 0 \implies \frac{f(x)}{g(x)} \le \frac{1 - F(x)}{1 - G(x)}$$
.

Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete support with pmf f

Definition

Let $F, G \in \mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. F monotone likelihood ratio dominates G ($F \ge_{MLR} G$) iff f(x)/g(x) is nondecreasing in x.

Proposition

Let $F,G\in\mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. $F\geq_{MLR} G\implies F\geq_{FOSD} G$.

Proof

(1)
$$f(x)g(y) \ge f(y)g(x) \ \forall x \ge y \implies (a) \ f(x)G(x) - F(x)g(x) \ge 0$$
 and
(b) $(1 - F(x))g(x) - f(x)(1 - G(x)) \ge 0 \ \forall x$.

(2) Note (a)
$$f(x)G(x) - F(x)g(x) \ge 0 \implies \frac{f(x)}{g(x)} \ge \frac{F(x)}{G(x)}$$
 and

(b)
$$(1 - F(x))g(x) - f(x)(1 - G(x)) \ge 0 \implies \frac{f(x)}{g(x)} \le \frac{1 - F(x)}{1 - G(x)}$$
.

(a) and (b)
$$\implies \frac{1-F(x)}{1-G(x)} \ge \frac{F(x)}{G(x)} \iff (1-F(x))G(x) \ge F(x)(1-G(x)) \iff G(x) \ge F(x) \ \forall x.$$

Gonçalves (UCL) 7. Stochastic Orders 11

Proposition

Let $F,G\in\mathcal{F}$ s.t. (i) either both admit a density, or (ii) both have discrete support. $F\geq_{MLR} G\implies F\geq_{FOSD} G$.

MLR is in a sense a minimal condition so that FOSD is preserved under Bayesian updating — very convenient property (see exercise)

Overview

- 1. Stochastic Orders
- 2. Setup
- 3. First-Order Stochastic Dominance
- 4. Monotone Likelihood Ratio Order
- 5. Second-Order Stochastic Dominance
 - Stochastic Orders in \mathbb{R}^n
- 6. Background Risks
- 7 More

Definition

For $F,G\in\mathcal{F},F$ second-order stochastically dominates (SOSD) G ($F\geq_{SOSD}G$) iff $\mathbb{E}_F[u]-\mathbb{E}_G[u]\geq 0$ for all nondecreasing, concave functions $u:\mathbb{R}\to\mathbb{R}$, such that $\mathbb{E}_F[u]-\mathbb{E}_G[u]$ is well-defined and $\int_{-\infty}^0 u(x)dF(x),\int_{-\infty}^0 u(x)dG(x)>-\infty$.

Definition

For $F,G\in\mathcal{F},F$ second-order stochastically dominates (SOSD) G ($F\geq_{SOSD}G$) iff $\mathbb{E}_F[u]-\mathbb{E}_G[u]\geq 0$ for all nondecreasing, concave functions $u:\mathbb{R}\to\mathbb{R}$, such that $\mathbb{E}_F[u]-\mathbb{E}_G[u]$ is well-defined and $\int_{-\infty}^0 u(x)dF(x),\int_{-\infty}^0 u(x)dG(x)>-\infty$.

Restricting F, G to have bounded support, then $\int_{-\infty}^{0} u(x)dF(x)$, $\int_{-\infty}^{0} u(x)dG(x) > -\infty$

Definition

For $F,G\in\mathcal{F},F$ second-order stochastically dominates (SOSD) G $(F\geq_{SOSD}G)\iff \mathbb{E}_F[u]-\mathbb{E}_G[u]\geq 0$ for all nondecreasing, concave functions $u:\mathbb{R}\to\mathbb{R}$, such that $\mathbb{E}_F[u]-\mathbb{E}_G[u]$ is well-defined and $\int_{-\infty}^0 u(x)dF(x),\int_{-\infty}^0 u(x)dG(x)>-\infty$.

WT find unambiguous ranking for risk averse DMs

Better understand riskiness

Separate individuals according to attitudes toward risk

Definition

For $F,G\in\mathcal{F},F$ second-order stochastically dominates (SOSD) G $(F\geq_{SOSD}G)\iff \mathbb{E}_F[u]-\mathbb{E}_G[u]\geq 0$ for all nondecreasing, concave functions $u:\mathbb{R}\to\mathbb{R}$, such that $\mathbb{E}_F[u]-\mathbb{E}_G[u]$ is well-defined and $\int_{-\infty}^0 u(x)dF(x),\int_{-\infty}^0 u(x)dG(x)>-\infty$.

WT find unambiguous ranking for risk averse DMs

Better understand riskiness

Separate individuals according to attitudes toward risk

How does \geq_{SOSD} compare with \geq_{FOSD} ? Which one allows for a finer comparison? Which one is stronger?

Theorem

 $\forall F,G \in \mathcal{F}',F \geq_{SOSD} G \iff \forall x \in X, \int_{-\infty}^{x} F(s)ds \leq \int_{-\infty}^{x} G(s)ds.$

Theorem

$$\forall F,G \in \mathcal{F}', F \geq_{\texttt{SOSD}} G \iff \forall x \in X, \, \textstyle \int_{-\infty}^{x} F(s) ds \leq \textstyle \int_{-\infty}^{x} G(s) ds.$$

Result has had troubled history; first version Hadar & Russell (1969 AER) and general version Tesfatsion (1976 RES).

We'll prove the result for the subset of distributions with bounded support \mathcal{F}' .

Theorem

 $\forall F,G \in \mathcal{F}', F \geq_{\text{SOSD}} G \iff \forall x \in X, \textstyle \int_{-\infty}^{x} F(s) ds \leq \textstyle \int_{-\infty}^{x} G(s) ds.$

Proof

Preliminaries: integration by parts: $\int_a^b u(x)dF(x) = F(b)u(b) - F(a)u(a) - \int_a^b F(x)du(x)$. Bounded support \implies choose $\overline{x}, \underline{x} : F(\underline{x}) = G(\underline{x}) = \mathbf{0}$ and $F(\overline{x}) = G(\overline{x}) = \mathbf{1}$ u defined on $(\underline{x} - \varepsilon, \overline{x} + \varepsilon)$.

Theorem

 $\forall F,G \in \mathcal{F}', F \geq_{SOSD} G \iff \forall x \in X, \int_{-\infty}^{x} F(s) ds \leq \int_{-\infty}^{x} G(s) ds.$

Proof

$$\Longrightarrow$$
 :

• For $a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{x \le a}(x - a)$; nondecreasing and concave

Theorem

 $\forall F,G \in \mathcal{F}', F \geq_{\text{SOSD}} G \iff \forall x \in X, \textstyle \int_{-\infty}^{x} F(s) ds \leq \textstyle \int_{-\infty}^{x} G(s) ds.$

Proof

 \Longrightarrow :

- For $a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{x < a}(x a)$; nondecreasing and concave
- Integration by parts:

$$\begin{split} &\int_{\underline{x}}^{a} u_{a}(x)dF(x) - \int_{\underline{x}}^{a} u_{a}(x)dG(x) \\ &= (F(a) - G(a))(a - a) - (F(\underline{x}) - G(\underline{x}))u_{a}(\underline{x}) + \int_{\underline{x}}^{a} (G(x) - F(x))dx \\ &= \int_{x}^{a} (G(x) - F(x)). \end{split}$$

Theorem

 $\forall F,G \in \mathcal{F}', F \geq_{\texttt{SOSD}} G \iff \forall x \in X, \textstyle \int_{-\infty}^{x} F(s) ds \leq \textstyle \int_{-\infty}^{x} G(s) ds.$

Proof

- \Longrightarrow :
 - For $a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{x \le a}(x a)$; nondecreasing and concave
 - Integration by parts: $\int_x^a u_a(x)dF(x) \int_x^a u_a(x)dG(x) = \int_x^a (G(x) F(x)).$

$$\mathbb{E}_{F}[u_{a}] - \mathbb{E}_{G}[u_{a}] \geq \mathbf{0}, \quad \forall a \iff \int_{x \leq a} u_{a}(x)dF(x) \geq \int_{x \leq a} u_{a}(x)dG(x), \quad \forall a$$

$$\iff \int_{x \leq a} u_{a}(x)dF(x) - \int_{x \leq a} u_{a}(x)dG(x) \geq \mathbf{0}, \quad \forall a$$

Theorem

 $\forall F,G \in \mathcal{F}', F \geq_{\texttt{SOSD}} G \iff \forall x \in X, \int_{-\infty}^{x} F(s) ds \leq \int_{-\infty}^{x} G(s) ds.$

Proof

 \Longrightarrow :

- For $a \in \mathbb{R}$, define $u_a(x) := \mathbf{1}_{x \le a}(x a)$; nondecreasing and concave
- Integration by parts: $\int_X^a u_a(x)dF(x) \int_X^a u_a(x)dG(x) = \int_X^a (G(x) F(x)).$

$$\mathbb{E}_{F}[u_{a}] - \mathbb{E}_{G}[u_{a}] \geq \mathbf{0}, \quad \forall a \iff \int_{x \leq a} u_{a}(x)dF(x) \geq \int_{x \leq a} u_{a}(x)dG(x), \quad \forall a$$

$$\iff \int_{x \leq a} u_{a}(x)dF(x) - \int_{x \leq a} u_{a}(x)dG(x) \geq \mathbf{0}, \quad \forall a$$

$$\iff \int_{x \leq a} (G(x) - F(x))dx \geq \mathbf{0}, \quad \forall a$$

$$\iff \int_{x} F(x)dx \leq \int_{x} G(x)dx, \quad \forall a.$$

Theorem

 $\forall F, G \in \mathcal{F}', F \geq_{SOSD} G \iff \forall x \in X, \int_{-\infty}^{x} F(s) ds \leq \int_{-\infty}^{x} G(s) ds.$

Proof Sketch

 \Leftarrow : Idea of the proof:

(i) Fix u and do a nice linear interpolation u^n of u over an n-evenly-spaced-point grid on $[x, \overline{x}]$.

Theorem

 $\forall F, G \in \mathcal{F}', F \geq_{SOSD} G \iff \forall x \in X, \int_{-\infty}^{x} F(s) ds \leq \int_{-\infty}^{x} G(s) ds.$

Proof Sketch

- \Leftarrow : Idea of the proof:
 - (i) Fix u and do a nice linear interpolation u^n of u over an n-evenly-spaced-point grid on $[\underline{x}, \overline{x}]$.
- (ii) Show that, for any n, we can express u^n as a finite sum of positive affine transformations of functions in the family u_a .

Theorem

 $\forall F, G \in \mathcal{F}', F \geq_{SOSD} G \iff \forall x \in X, \int_{-\infty}^{x} F(s) ds \leq \int_{-\infty}^{x} G(s) ds.$

Proof Sketch

- \Leftarrow : Idea of the proof:
 - (i) Fix u and do a nice linear interpolation u^n of u over an n-evenly-spaced-point grid on $[\underline{x}, \overline{x}]$.
- (ii) Show that, for any n, we can express u^n as a finite sum of positive affine transformations of functions in the family u_a .
- (iii) Show that as $n \uparrow \infty$, u^n converges uniformly to u.

Theorem

 $\forall F,G \in \mathcal{F}',F \geq_{SOSD} G \iff \forall x \in X, \int_{-\infty}^{x} F(s)ds \leq \int_{-\infty}^{x} G(s)ds.$

Proof Sketch

- ⇐ : Idea of the proof:
 - (i) Fix u and do a nice linear interpolation u^n of u over an n-evenly-spaced-point grid on $[\underline{x}, \overline{x}]$.
- (ii) Show that, for any n, we can express u^n as a finite sum of positive affine transformations of functions in the family u_a .
- (iii) Show that as $n \uparrow \infty$, u^n converges uniformly to u.
- (iv) Use (ii) to show that $\int_{-\infty}^{x} F(s)ds \leq \int_{-\infty}^{x} G(s)ds \forall x \implies \sum_{i=1}^{K_n} \mathbb{E}_F[u_{X_i^n}] \mathbb{E}_G[u_{X_i^n}] \equiv \mathbb{E}_F[u^n] \mathbb{E}_G[u^n] > \mathbf{0} \forall n$.

Theorem

 $\forall F,G \in \mathcal{F}', F \geq_{\text{SOSD}} G \iff \forall x \in X, \int_{-\infty}^{x} F(s) ds \leq \int_{-\infty}^{x} G(s) ds.$

Proof Sketch

 \Leftarrow : Idea of the proof:

- (i) Fix u and do a nice linear interpolation u^n of u over an n-evenly-spaced-point grid on $[x, \bar{x}]$.
- (ii) Show that, for any n, we can express u^n as a finite sum of positive affine transformations of functions in the family u_a .
- (iii) Show that as $n \uparrow \infty$, u^n converges uniformly to u.
- (iv) Use (ii) to show that $\int_{-\infty}^{x} F(s)ds \leq \int_{-\infty}^{x} G(s)ds \forall x \implies \sum_{i=1}^{K_n} \mathbb{E}_F[u_{X_i^n}] \mathbb{E}_G[u_{X_i^n}] \equiv \mathbb{E}_F[u^n] \mathbb{E}_G[u^n] \geq 0 \forall n$.
- (v) Use (iii) and (iv) to show that $\mathbf{0} \leq \mathbb{E}_F[u^n] \mathbb{E}_G[u^n] \to \mathbb{E}_F[u] \mathbb{E}_G[u] \geq \mathbf{0}$. (Filling in the blanks left as an exercise.)

Definition

For $F,G \in \mathcal{F}$, G is a **mean-preserving spread of** (MPS) F ($G \geq_{MPS} F$) iff \exists random variables X,Y, and ε , such that $Y \stackrel{d}{=} X + \varepsilon$, $X \sim F$, $Y \sim G$, and $\mathbb{E}[\varepsilon \mid X] = 0$.

Definition

For $F,G\in\mathcal{F}$, G is a **mean-preserving spread of** (MPS) F ($G\geq_{MPS}F$) iff \exists random variables X, Y, and ε , such that $Y\stackrel{d}{=}X+\varepsilon$, $X\sim F$, $Y\sim G$, and $\mathbb{E}[\varepsilon\mid X]=\mathbf{0}$.

Properties of MPS

(i) $G \ge_{MPS} F \implies F \ge_{SOSD} G$, but the converse is not true in general.

Definition

For $F,G\in\mathcal{F}$, G is a **mean-preserving spread of** (MPS) F ($G\geq_{MPS}F$) iff \exists random variables X, Y, and ε , such that $Y\stackrel{d}{=}X+\varepsilon$, $X\sim F$, $Y\sim G$, and $\mathbb{E}[\varepsilon\mid X]=\mathbf{0}$.

Properties of MPS

- (i) $G \ge_{MPS} F \implies F \ge_{SOSD} G$, but the converse is not true in general.
- (ii) $F \geq_{SOSD} G \implies \mathbb{E}_F[x] \geq \mathbb{E}_G[x]$.

Definition

For $F,G \in \mathcal{F}$, G is a **mean-preserving spread of** (MPS) F ($G \geq_{MPS} F$) iff \exists random variables X, Y, and ε , such that $Y \stackrel{d}{=} X + \varepsilon$, $X \sim F$, $Y \sim G$, and $\mathbb{E}[\varepsilon \mid X] = \mathbf{0}$.

Properties of MPS

- (i) $G \ge_{MPS} F \implies F \ge_{SOSD} G$, but the converse is not true in general.
- (ii) $F \ge_{SOSD} G \implies \mathbb{E}_F[x] \ge \mathbb{E}_G[x]$.
- (iii) $G \ge_{MPS} F \implies \mathbb{E}_F[x] = \mathbb{E}_G[x]$ and $\mathbb{V}_F[x] \le \mathbb{V}_G[x]$. (Prove it)

Definition

For $F,G\in\mathcal{F}$, G is a **mean-preserving spread of** (MPS) F ($G\geq_{MPS}F$) iff \exists random variables X, Y, and ε , such that $Y\stackrel{d}{=}X+\varepsilon$, $X\sim F$, $Y\sim G$, and $\mathbb{E}[\varepsilon\mid X]=0$.

Properties of MPS

- (i) $G \ge_{MPS} F \implies F \ge_{SOSD} G$, but the converse is not true in general.
- (ii) $F \geq_{SOSD} G \implies \mathbb{E}_F[x] \geq \mathbb{E}_G[x]$.
- (iii) $G \ge_{MPS} F \implies \mathbb{E}_F[x] = \mathbb{E}_G[x]$ and $\mathbb{V}_F[x] \le \mathbb{V}_G[x]$. (Prove it)
- (iv) $F \ge_{FOSD} G \implies F \ge_{SOSD} G$, but the converse is not true in general.
- (v) \geq_{SOSD} and \geq_{MPS} are partial orders.

Second-Order Stochastic Dominance in \mathbb{R}^n

Results extend to more general spaces.

Definition

For $F,G\in\Delta(\mathbb{R}^n)$. F is a **second-order stochastically dominates** (FOSD) G ($F\geq_{SOSD}G$) iff $\mathbb{E}_F[u]\geq\mathbb{E}_G[u]$ for all nondecreasing concave $u:\mathbb{R}^n\to\mathbb{R}$, whenever both expectations exist.

Gonçalves (UCL) 7. Stochastic Orders 20

Second-Order Stochastic Dominance in \mathbb{R}^n

Results extend to more general spaces.

Definition

For $F,G\in\Delta(\mathbb{R}^n)$. F is a **second-order stochastically dominates** (FOSD) G ($F\geq_{SOSD} G$) iff $\mathbb{E}_F[u]\geq\mathbb{E}_G[u]$ for all nondecreasing concave $u:\mathbb{R}^n\to\mathbb{R}$, whenever both expectations exist.

Theorem (Strassen 1965, Theorem 2.6.8)

Let F and G be distributions on \mathbb{R}^n with bounded support. $F \geq_{SOSD} G$ if and only if $\exists X \sim F$ and $Y \sim G$ such that $X \geq \mathbb{E}[Y \mid X]$ a.s.

Result provides a way to define a joint distribution H(x, y) such that the marginals over x and y equal F and G and $\int_{\mathbb{R}^n} yH(x,y)dy = \mathbb{E}[Y|X=x] \leq x$.

Gonçalves (UCL) 7. Stochastic Orders 20

Mean-Preserving Spreads in \mathbb{R}^n

Corollary

Let F and G be distributions on \mathbb{R}^n with bounded support. G is a mean-preserving spread of F if and only if $F \geq_{SOSD} G$ and $\mathbb{E}_F[x] = \mathbb{E}_G[x]$.

Why do we care? +Information \implies MPS of beliefs!

Overview

- 1. Stochastic Orders
- 2. Setup
- 3. First-Order Stochastic Dominance
- 4. Monotone Likelihood Ratio Order
- 5. Second-Order Stochastic Dominance
- 6. Background Risks
- 7. More

Often simplify comparison of lotteries $X \sim F$ and $Y \sim G$.

In reality: background risks ε ; right comparison is $X + \varepsilon$ vs $Y + \varepsilon$

Often simplify comparison of lotteries $X \sim F$ and $Y \sim G$.

In reality: background risks ε ; right comparison is $X + \varepsilon$ vs $Y + \varepsilon$

When background risks are significant, it may overwhelm limited risk in X in Y

Pomatto, Strack, & Tamuz (2020 JPE): study connection between (independent) background risks and stochastic orders

Often simplify comparison of lotteries $X \sim F$ and $Y \sim G$.

In reality: background risks ε ; right comparison is $X + \varepsilon$ vs $Y + \varepsilon$

When background risks are significant, it may overwhelm limited risk in X in Y

Pomatto, Strack, & Tamuz (2020 JPE): study connection between (independent) background risks and stochastic orders

Theorem

Let X and Y be random variables with finite variance.

(i) If $\mathbb{E}[X] > \mathbb{E}[Y]$, then \exists indep. random variable $\varepsilon : X + \varepsilon \geq_{FOSD} Y + \varepsilon$.

Often simplify comparison of lotteries $X \sim F$ and $Y \sim G$.

In reality: background risks ε ; right comparison is $X + \varepsilon$ vs $Y + \varepsilon$

When background risks are significant, it may overwhelm limited risk in X in Y

Pomatto, Strack, & Tamuz (2020 JPE): study connection between (independent) background risks and stochastic orders

Theorem

Let X and Y be random variables with finite variance.

- (i) If $\mathbb{E}[X] > \mathbb{E}[Y]$, then \exists indep. random variable $\varepsilon : X + \varepsilon \ge_{FOSD} Y + \varepsilon$.
- (ii) If $\mathbb{E}[X] = \mathbb{E}[Y]$ and $\mathbb{V}[X] < \mathbb{V}[Y]$, then \exists indep. random variable $\epsilon : X + \epsilon \geq_{SOSD} Y + \epsilon$.

Often simplify comparison of lotteries $X \sim F$ and $Y \sim G$.

In reality: background risks ε ; right comparison is $X + \varepsilon$ vs $Y + \varepsilon$

When background risks are significant, it may overwhelm limited risk in X in Y

Pomatto, Strack, & Tamuz (2020 JPE): study connection between (independent) background risks and stochastic orders

Theorem

Let X and Y be random variables with finite variance.

- (i) If $\mathbb{E}[X] > \mathbb{E}[Y]$, then \exists indep. random variable $\varepsilon : X + \varepsilon \geq_{FOSD} Y + \varepsilon$.
- (ii) If $\mathbb{E}[X] = \mathbb{E}[Y]$ and $\mathbb{V}[X] < \mathbb{V}[Y]$, then \exists indep. random variable $\epsilon : X + \epsilon \geq_{SOSD} Y + \epsilon$.

Rationalises approximation of looking at expectation and variance in assessing assets when facing significant background noise.

Furthermore: if $\mathbb{E}[X] > \mathbb{E}[Y]$ and want everyone to prefer X to Y, can throw in some well calibrated background noise.

Overview

- 1. Stochastic Orders
- 2. Setup
- 3. First-Order Stochastic Dominance
- 4. Monotone Likelihood Ratio Order
- 5. Second-Order Stochastic Dominance
- 6. Background Risks
- 7. More

Meyer and Strulovici (2012): ordering interdependence useful for finance (valuing portfolios), empirical work (inputing data), measuring alignment of preferences in decision-making in groups (e.g. voting), etc.

Meyer and Strulovici (2012): ordering interdependence useful for finance (valuing portfolios), empirical work (inputing data), measuring alignment of preferences in decision-making in groups (e.g. voting), etc.

Kleiner, Moldovanu, and Strack (2021 Ecta) derive properties related to MPS and leverage these to study auctions, delegation, and decision-making under uncertainty (among others).

- Meyer and Strulovici (2012): ordering interdependence useful for finance (valuing portfolios), empirical work (inputing data), measuring alignment of preferences in decision-making in groups (e.g. voting), etc.
- Kleiner, Moldovanu, and Strack (2021 Ecta) derive properties related to MPS and leverage these to study auctions, delegation, and decision-making under uncertainty (among others).
- MCS with stochastic orders: distributional comparative statics in macro models, in games, in information, etc. (Jensen 2018 RES)

- Meyer and Strulovici (2012): ordering interdependence useful for finance (valuing portfolios), empirical work (inputing data), measuring alignment of preferences in decision-making in groups (e.g. voting), etc.
- Kleiner, Moldovanu, and Strack (2021 Ecta) derive properties related to MPS and leverage these to study auctions, delegation, and decision-making under uncertainty (among others).
- MCS with stochastic orders: distributional comparative statics in macro models, in games, in information, etc. (Jensen 2018 RES)
- Reference textbooks: Muller and Stoyan (2002), Shaked and Shanthikumar (2007).