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Overview

So far: risk attitudes, i.e., patterns of individual behaviour in choices involving risk

This lecture: know how to rank lotteries/distributions in unambiguous manner among
groups of individuals.

1. Rank distributions F and G s.t. every EU maximiser (with monotone u) would
agree. (e.g., everyone would agree £2 for sure is better than £1 for sure)
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groups of individuals.

1. Rank distributions F and G s.t. every EU maximiser (with monotone u) would
agree. (e.g., everyone would agree £2 for sure is better than £1 for sure)

2. Rank distributions according to ‘riskiness’, i.e., s.t. every risk-averse EU maximiser
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Overview

So far: risk attitudes, i.e., patterns of individual behaviour in choices involving risk
This lecture: know how to rank lotteries/distributions in unambiguous manner among
groups of individuals.
1. Rank distributions F and G s.t. every EU maximiser (with monotone u) would
agree. (e.g., everyone would agree £2 for sure is better than £1 for sure)
2. Rank distributions according to ‘riskiness’, i.e., s.t. every risk-averse EU maximiser
would agree.
(Is 2 stronger or weaker than 1?)
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Overview

2. Setup



Setup

e Outcome space: X C R
x € X: DM's final wealth.

e Cumulative Probability Distributions Function F
F:R — [0,1] s.t. F is nondecreasing, right-continuous, limy—-oo F(x) = 0, and
limx— o0 F(x) = Twith support on X, i.e. P(X) = [}, dF(x) = 1.

Expectation Operator: Ef[ ]

e F: set of all cumulative probability functions on X
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Overview

3. First-Order Stochastic Dominance



First-Order Stochastic Dominance

Ranking of distributions s.t. every EU maximiser agrees:

Definition

A distribution F first-order stochastically dominates (FOSD) a distribution G, denoted
by F >rosp G iff, for all nondecreasing functions u : X — R, EF[u] > Eglul.
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First-Order Stochastic Dominance

Ranking of distributions s.t. every EU maximiser agrees:

Definition

A distribution F first-order stochastically dominates (FOSD) a distribution G, denoted
by F >rosp G iff, for all nondecreasing functions u : X — R, EF[u] > Eglul.

Theorem

VF:GG}-:FZFOSDG == VXGX,F(X)SG(X)
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First-Order Stochastic Dominance

Ranking of distributions s.t. every EU maximiser agrees:

Definition

A distribution F first-order stochastically dominates (FOSD) a distribution G, denoted
by F >rosp G iff, for all nondecreasing functions u : X — R, EF[u] > Eglul.

Theorem

VF:GG}-:FZFOSDG == VXGX,F(X)SG(X)

Remarkably simple characterisation of such strong property!
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First-Order Stochastic Dominance

Theorem
VF,G eJ:IFZFOSD G <= VXEX,F(X) < G(X)

Proof

=
e Va € R, define ua(x) = Ty>4) 14 = 1if Alis true, and O if ow.
e Uy nondecreasing Va € R.
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First-Order Stochastic Dominance

Theorem
VF,G GJ:IFZFOSD G <= VXEX,F(X) < G(X)
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First-Order Stochastic Dominance

Theorem
VF,GGJ:,FZFOSDG <~ VXEX,F(X)SG(X).

Proof
=
e Va € R, define ua(x) = Ty>4) 14 = 1if Alis true, and O if ow.
e Uy nondecreasing Va € R.
F >rosp G = Eflual > Eglual Va € R

— /Xua(x)d/—'(x) > /Xua(x)dG(x) Va € R

— / 1dF(x)2/ 1dG(x) va € R
x>a x>a



First-Order Stochastic Dominance

Theorem

VF,GGJ:,FZFOSDG <~ VXEX,F(X)SG(X).

Proof

=
e Va € R, define ua(x) = Ty>4) 14 = 1if Alis true, and O if ow.
e Uy nondecreasing Va € R.

F >FOSD G = EF[Ua] > EG[Ua] YaeR

— /Xua(x)d/—'(x) > /Xua(x)dG(x) Va € R

— / 1dF(x)2/ 1dG(x) va € R
x>a x>a

<= 1-F(@@)>1-G(@ VvVaeR
<= F(a) < G(a) Va e R.
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First-Order Stochastic Dominance

Theorem
VF,G E]:'FZFOSD G <= VXEX,F(X) < G(X)

Proof

+=: A small detour
We'll use a result in statistics called the inverse transform method.
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Inverse Transform Sampling

Definition

VF € F, the generalised inverse (or quantile function) is given by Qg(t) := min{x € R |
F(x) > 1}, vt € (0,7).
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Inverse Transform Sampling

{ Definition

VF € F, the generalised inverse (or quantile function) is given by Qg(t) := min{x € R |
F(x) > 1}, vt € (0,7).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).
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Inverse Transform Sampling

{ Definition

VF € F, the generalised inverse (or quantile function) is given by Qg(t) := min{x € R |
F(x) > 1}, vt € (0,7).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Simulating uniform rv is convenient and computationally efficient = computationally
efficient way of simulating any rv!
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Inverse Transform Sampling

{ Definition
Qr(t) =min{x e R | F(x) > 1}, vt € (0,1).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Proof

WTS P(Qe(U) < x) = F(X).

(1) Qf is nondecreasing:
Fisnondecreasing = V&' > 1, {x € R | FX) >t} C{x €R | FX) > 1} —
Qr(t) < Qp(t').



Inverse Transform Sampling

{ Definition
Qr(t) =min{x e R | F(x) > 1}, vt € (0,1).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Proof

WTS P(Qe(U) < x) = F(X).

(1) Qf is nondecreasing:
Fisnondecreasing = V&' > 1, {x € R | FX) >t} C{x €R | FX) > 1} —
Qr(t) < Qp(t').

(2) Qe(F()) < x VQ(F(x)) = minfy : F(y) = F()} and x € {y : F(y) = F(x)}.



Inverse Transform Sampling

{ Definition
Qr(t) =min{x e R | F(x) > 1}, vt € (0,1).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Proof

WTS P(Qe(U) < x) = F(x).
(1) Qf is nondecreasing:
Fisnondecreasing = V&' > 1, {x € R | FX) >t} C{x €R | FX) > 1} —
QF(r) < Qp(r).
(2) Qe(F(x)) < x .- YQp(F(x)) = minfy : F(y) = F(x)} and x € {y : F(y) = F(x)}.
(8) Taket € (0,1),x € R: 1< F(x). Then,

T<FX) = Qr(t)=minf{y R | Fy) = 7} < min{y € R | Fy) > F()} = Qr(F(x))



Inverse Transform Sampling

{ Definition
Qr(t) =min{x e R | F(x) > 1}, vt € (0,1).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Proof

WTS P(Qe(U) < x) = F(x).
(1) Qf is nondecreasing:
Fisnondecreasing = V&' > 1, {x € R | FX) >t} C{x €R | FX) > 1} —
QF(r) < Qp(r).
(2) Qe(F(x)) < x .- YQp(F(x)) = minfy : F(y) = F(x)} and x € {y : F(y) = F(x)}.
(8) Taket € (0,1),x € R: 1< F(x). Then,

T<F(X) = Qr(r)=min{y eR | F(y) > 1} <min{y € R | F(y) > F(x)} = Qe(F(X)) < x.
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Inverse Transform Sampling

{ Definition
Qr(t) =min{x e R | F(x) > 1}, vt € (0,1).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Proof

WTS P(Qp(U) < X) = F(x).
(1) Qr is nondecreasing. (2) Qr(F(x)) < x. (3) 1< F(x) = Qr(r) < Qe(F(x)) < x.
(4) As Qe(t) < x = 1 < F(x) (Qr nondecreasing), then

*) (Qr
{U<F} C{QrU) <X} C{U < FX)}



Inverse Transform Sampling

{ Definition
Qr(t) =min{x e R | F(x) > 1}, vt € (0,1).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Proof

WTS P(Qp(U) < X) = F(x).
(1) Qr is nondecreasing. (2) Qe(F(x)) < x. 3) T < F(x) = Qf(1) < Qe(F(x)) < x.
(4) As Qe(t) < x = 1 < F(x) (Qr nondecreasing), then

{U<FX} C{Qr(U) < x3 S{U < F(0}
= P(U<F(x) < P(Qe(V) < x) < P(U < F(x))



Inverse Transform Sampling

{ Definition
Qr(t) =min{x e R | F(x) > 1}, vt € (0,1).

{ Proposition (Inverse Transform Sampling)

Let F € Fand X ~ F. Then, X g Qr(U), where U ~ Unif(0,1).

Proof

WTS P(Qp(U) < X) = F(x).
(1) Qr is nondecreasing. (2) Qe(F(x)) < x. 3) T < F(x) = Qf(1) < Qe(F(x)) < x.
(4) As Qr(t) < x = 1 < F(X) (Qr nondecreasing), then
{U<FX)} C{Rr(U) <x} C{U < F(x)}
< P(U<FX) < P(Qr(U) < x) < PU < F()
< F(x) < P(Qr(U) < x) < F(x).
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First-Order Stochastic Dominance

Theorem
VF,G eJ:IFZFOSD G <= VXEX,F(X) < G(X)

Proof

< : Back to characterising FOSD. Fix u, define quantile functions Qf and Qg.
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First-Order Stochastic Dominance

Theorem
VF,GGJ:,FZFOSDG <~ VXEX,F(X)SG(X).

Proof

< : Back to characterising FOSD. Fix u, define quantile functions Qf and Qg.

Fix) <GX), veX = (Fx) >1 = G(x) >1)
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= Qr(7) > Q7).
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First-Order Stochastic Dominance

Theorem
VF,GGJ:,FZFOSDG <~ VXEX,F(X)SG(X).

Proof
< : Back to characterising FOSD. Fix u, define quantile functions Qf and Qg.
Fix) <GX), veX = (Fx) >1 = G(x) >1)
= XeX|FN) >t CxeX|GX >1
= Qr(1) 2 Qg ().
F(x) < G(x), Vx € X = Qr(2) > Qs(2), vz € (0,7)
= U(Qr(2)) > u(Qg(2)), vz € (0,1) as unondec

— /[0 -z > /[0 | ua(z)ez

= /u(x)dF(x) > /u(x)dG(x) inverse transform sampling
X X



First-Order Stochastic Dominance

Theorem
VF,GGJ:,FZFOSDG <~ VXEX,F(X)SG(X).

Proof
< : Back to characterising FOSD. Fix u, define quantile functions Qf and Qg.

Fix) <GX), veX = (Fx) >1 = G(x) >1)
= XeX|FN) >t CxeX|GX >1
= Qr(7) > Q7).
F(x) < G(x), Vx € X = Qr(2) > Qs(2), vz € (0,7)
— u(Qr(2)) > u(Qs(2)), vz € (0,1  as unondec

— / u(QF@)dz > /[0 RICEES
u(

)

<:>/ X)dF(x / x)dG(x) inverse transform sampling

C>EF >EG[] O
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Overview

4. Monotone Likelihood Ratio Order



Monotone Likelihood Ratio Order
Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete
support with pmf f
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Monotone Likelihood Ratio Order
Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete
support with pmf f

Definition

Let F,G € F s.t. (i) either both admit a density, or (ii) both have discrete support. F
monotone likelihood ratio dominates G (F >, 5 G) iff f(x)/g(x) is nondecreasing in x.
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Monotone Likelihood Ratio Order
Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete
support with pmf f

Definition

Let F,G € F s.t. (i) either both admit a density, or (ii) both have discrete support. F
monotone likelihood ratio dominates G (F >, 5 G) iff f(x)/g(x) is nondecreasing in x.

Proposition

Let F,G € F st (i) either both admit a density, or (ii) both have discrete support.
F>wr G = F >Fosp G.
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Monotone Likelihood Ratio Order
Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete

support with pmf f

{ Definition
Let F,G € F s.t. (i) either both admit a density, or (ii) both have discrete support. F
monotone likelihood ratio dominates G (F >, 5 G) iff f(x)/g(x) is nondecreasing in x.

{ Proposition
Let F,G € F st (i) either both admit a density, or (ii) both have discrete support.
F>wr G = F >Fosp G.

Proof
(M fXgly) > f)gk) vx >y = (a) f(x)G(x) - Fx)g(x) > 0 and
(b) (1= F))g(x) = fF)(1 = G(x)) > 0 Vx.




Monotone Likelihood Ratio Order
Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete

support with pmf f

{ Definition

Let F,G € F s.t. (i) either both admit a density, or (ii) both have discrete support. F
monotone likelihood ratio dominates G (F >, 5 G) iff f(x)/g(x) is nondecreasing in x.

{ Proposition
Let F,G € F st (i) either both admit a density, or (ii) both have discrete support.
F>wr G = F >Fosp G.

Proof

(M fXgly) > f)gk) vx >y = (a) f(x)G(x) - Fx)g(x) > 0 and
(b) (1= F))gx) = FE)(1 = ( )) > 0Vx.

(2) Note (a) f(x)G(x) = F(x)g(x) >

(b) (1 - Fo)g() = F)(1 - 6() > 0 = L&




Monotone Likelihood Ratio Order
Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete
support with pmf f

{ Definition

Let F,G € F s.t. (i) either both admit a density, or (ii) both have discrete support. F
monotone likelihood ratio dominates G (F >, 5 G) iff f(x)/g(x) is nondecreasing in x.

{ Proposition

Let F,G € F st (i) either both admit a density, or (ii) both have discrete support.
F>wr G = F >Fosp G.

Proof

(M f)gy) > fy)gkx) vx >y

(b) (1 = F())g(x) = FO)(1 -
(2) Note (a) f(x)G(x) — F(x)g(x) > 0
(b) (1 = F(x))g(x)
(a)and (b) = ;;ggx;
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Monotone Likelihood Ratio Order

Proposition

Let F,G € F s.t. (i) either both admit a density, or (ii) both have discrete support.
F>wrG = F >rosp G.

MLR is in a sense a minimal condition so that FOSD is preserved under Bayesian
updating — very convenient property (see exercise)
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Overview

5. Second-Order Stochastic Dominance
- Stochastic Orders in R"



Second-Order Stochastic Dominance

Definition

For F,G € F, F second-order stochastically dominates (SOSD) G (F >gpsp G) iff
Erlu] — Eglu] > 0 for all nondecreasing, concave functions u : R — R, such that
Er[u] - Eg[u] is well-defined and f_ooo u(X)dF(x), f_o (x)dG(x) > —oo.

u
[eS)
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Second-Order Stochastic Dominance

Definition

For F,G € F, F second-order stochastically dominates (SOSD) G (F >gpsp G) iff
Erlu] - Eglu] > 0 for all nondecreasmg concave functions u : R — R, such that
Er[u] - Eg[u] is well-defined and f u(X)dF(x), f u(x)dG(x) > —oo.

Restricting F, G to have bounded support, then f (x)dF(x), f u(X)dG(x) > —oo
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Second-Order Stochastic Dominance

Definition

For F,G € F, F second-order stochastically dominates (SOSD) G (F >gpsp G) <—
Erlu] - Eglu] > 0 for all nondecreasing, concave functions u : R — R, such that
Er[u] - Eg[u] is well-defined and f_ooo u(X)dF(x), f_o (x)dG(x) > —oo.

u
[eS)

WT find unambiguous ranking for risk averse DMs
Better understand riskiness
Separate individuals according to attitudes toward risk
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Second-Order Stochastic Dominance

Definition

For F,G € F, F second-order stochastically dominates (SOSD) G (F >gpsp G) <—
Erlu] - Eglu] > 0 for all nondecreasing, concave functions u : R — R, such that
Er[u] - Eg[u] is well-defined and f_ooo u(X)dF(x), f_ooo u(x)dG(x) > —oo.

WT find unambiguous ranking for risk averse DMs
Better understand riskiness
Separate individuals according to attitudes toward risk

How does >gpsp compare with >rogp? Which one allows for a finer comparison?
Which one is stronger?
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Second-Order Stochastic Dominance

Theorem

VF,G € F',F >505p G <= Wx € X, [X_F(s)ds < [*_ G(s)ds.
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Second-Order Stochastic Dominance

Theorem

VF,G € F',F >50sp G < Wx€X, [*_F(s)ds < [ G(s)ds.

Result has had troubled history; first version Hadar & Russell (1969 AER) and general
version Tesfatsion (1976 RES).

WEe'll prove the result for the subset of distributions with bounded support F.
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Second-Order Stochastic Dominance

Theorem

VF,G € F,F >g0sp G < Wx € X, [*_F(s)ds < [* _ G(s)ds

Proof

a

1

Preliminaries: integration by parts: fab X)dF(x) = F(b)u(b) — F(a)u(a) — fb F()du(x).

Bounded support = chooseX, x : F(x )
udefinedon (x — ¢, X +¢).

G(x) = 0and F(x) = G(x)
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Second-Order Stochastic Dominance

Theorem

VF,G € F',F >50sp G < Wx€X, [*_F(s)ds < [ G(s)ds.

Proof
=
e Fora € R, define ua(x) := Ty<a(x — a); nondecreasing and concave



Second-Order Stochastic Dominance

Theorem

VF,G € F',F >50sp G < Wx€X, [*_F(s)ds < [ G(s)ds.

Proof

=
e Fora € R, define ua(x) := Ty<a(x — a); nondecreasing and concave
e Integration by parts:

/ ” s (0dF () - /  1a(0dG00)

= (F(a) - G(a))(a - a) = (F() — G(9)ualx) + /Xa(G(X) = F(x))dx
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Second-Order Stochastic Dominance

Theorem

VF,G € F,F >g0sp G < Wx € X, [*_F(s)ds < [* _ G(s)ds

Proof
=
e Fora € R, define ua(x) := Ty<a(x — a); nondecreasing and concave

o Integration by parts: [ ua(x)dF(x) = [ ua()dG(x) = [ (G(x) = F(x)).

Erlua] - Eglua) > 0, Va <:>/ ()dF(x) > / Ua(X)dG(x), Va
<a

— /xga ua(X)dF(x) - /Xga ua()dG(x) > 0, Va



Second-Order Stochastic Dominance

Theorem

VF,G € F,F >g0sp G < Wx € X, [*_F(s)ds < [* _ G(s)ds

Proof
=
e Fora € R, define ua(x) := Ty<a(x — a); nondecreasing and concave
o Integration by parts: [ ua(x)dF(x) = [ ua()dG(x) = [ (G(x) = F(x)).

Erlua] - Eglua) > 0, Va <:>/ ()dF(x) > / Ua(X)dG(x), Va
<a

— /<a Ua(X)dF(x) = /xga Ua(X)dG(x) > 0, Va
= /<a X))dx >0, Va

/ dx</ G(x Va.
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() Fix uand do a nice linear interpolation u” of u over an n-evenly-spaced-point grid
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Second-Order Stochastic Dominance

Theorem

VF,G € F',F >50sp G < Wx€X, [*_F(s)ds < [ G(s)ds.

Proof Sketch

<— : Idea of the proof:
() Fix uand do a nice linear interpolation u” of u over an n-evenly-spaced-point grid
on [x,x].

(i) Show that, for any n, we can express u" as a finite sum of positive affine transfor-
mations of functions in the family ua.

(i) Show that as n 1 oo, U converges uniformly to u.

(iv) Use (ii) to show that % F(s)ds < [* _G(s)dsvx = Z,’iﬂ Erluw] - Egluy] =
EF[u"] - Eglu"] > Ovn.

(v) Use (iii) and (iv) to show that 0 < Eg[u"] - Eg[u"] — Eglu] = Eglu] > 0.
(Filling in the blanks left as an exercise.)
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Mean-Preserving Spread

Definition

For F,G € F, G is a mean-preserving spread of (MPS) F (G >,ps F) iff 3 random
variables X, Y, and g, such that Y g X+eX~F Y~G andE[e| X]=0.
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Mean-Preserving Spread

Definition

For F,G € F, G is a mean-preserving spread of (MPS) F (G >,ps F) iff 3 random
variables X, Y, and g, such that Y g X+eX~F Y~G andE[e| X]=0.

Properties of MPS

(i) G >mps F = F >s0sp G, but the converse is not true in general.
(i) F >s0sp G = Eflx] > Eglx].

)

)
(i) G >pmps F = Efrlx] = Eglx] and VE[x] < Vglx]. (Prove it)
(iv) F >rosp G = F >s505p G, but the converse is not true in general.
)

(V) >s0sp and >pps are partial orders.
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Second-Order Stochastic Dominance in R

Results extend to more general spaces.

Definition

For F,G € A(R™). F is a second-order stochastically dominates (FOSD) G (F >gosp G)

iff Ec[u] > Eglu] for all nondecreasing concave u : R" — R, whenever both expectations
exist.
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Second-Order Stochastic Dominance in R

Results extend to more general spaces.

{ Definition

For F,G € A(R™). F is a second-order stochastically dominates (FOSD) G (F >gosp G)
iff Ec[u] > Eglu] for all nondecreasing concave u : R" — R, whenever both expectations
exist.

{ Theorem (Strassen 1965, Theorem 2.6.8)

Let F and G be distributions on R" with bounded support. F >gogsp G if and only if
3X ~ Fand Y ~ G such that X > E[Y | X] a.s.

Result provides a way to define a joint distribution H(x, y) such that the marginals over x
and y equal F and G and [, yH(x,y)dy = E[YIX = x] < x.
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Mean-Preserving Spreads in R

Corollary

Let Fand G be distributions on R" with bounded support. G is a mean-preserving spread
of Fifand only if F >go5p G and Ef[x] = Eglx].

Why do we care? +Information = MPS of beliefs!
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Overview

6. Background Risks



Background Risks

Often simplify comparison of lotteries X ~ Fand Y ~ G.

In reality: background risks €; right comparisonis X +evs Y +¢
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When background risks are significant, it may overwhelm limited risk in X in Y

Pomatto, Strack, & Tamuz (2020 JPE): study connection between (independent)
background risks and stochastic orders
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Let X and Y be random variables with finite variance.
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Background Risks

Often simplify comparison of lotteries X ~ Fand Y ~ G.
In reality: background risks €; right comparisonis X +evs Y +¢
When background risks are significant, it may overwhelm limited risk in X in Y

Pomatto, Strack, & Tamuz (2020 JPE): study connection between (independent)
background risks and stochastic orders

Theorem

Let X and Y be random variables with finite variance.
(i) If EX] > E[Y], then Jindep. random variable e : X + & >rogp Y + €.

(i) If E[X] = E[Y] and V[X] < V[Y], then 3 indep. random variable e : X +& >gogp Y + €.

Rationalises approximation of looking at expectation and variance in assessing assets
when facing significant background noise.

Furthermore: if E[X] > E[Y] and want everyone to prefer X to Y, can throw in some well
calibrated background noise.
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Overview

7. More



More on Stochastic Orders

Meyer and Strulovici (2012): ordering interdependence
useful for finance (valuing portfolios), empirical work (inputing data), measuring
alignment of preferences in decision-making in groups (e.g. voting), etc.
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(among others).
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More on Stochastic Orders

Meyer and Strulovici (2012): ordering interdependence
useful for finance (valuing portfolios), empirical work (inputing data), measuring
alignment of preferences in decision-making in groups (e.g. voting), etc.

Kleiner, Moldovanu, and Strack (2021 Ecta) derive properties related to MPS and
leverage these to study auctions, delegation, and decision-making under uncertainty
(among others).

MCS with stochastic orders: distributional comparative statics in macro models, in
games, in information, etc. (Jensen 2018 RES)

Reference textbooks: Muller and Stoyan (2002), Shaked and Shanthikumar (2007).
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