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Overview

So far: risk attitudes, i.e., patterns of individual behaviour in choices involving risk

This lecture: know how to rank lotteries/distributions in unambiguous manner among
groups of individuals.

1. Rank distributions F and G s.t. every EU maximiser (with monotone u) would
agree. (e.g., everyone would agree £2 for sure is better than £1 for sure)

2. Rank distributions according to ‘riskiness’, i.e., s.t. every risk-averse EU maximiser
would agree.
(Is 2 stronger or weaker than 1?)
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Setup

• Outcome space: X ⊆ R

x ∈ X: DM’s final wealth.

• Cumulative Probability Distributions Function F
F : R → [0, 1] s.t. F is nondecreasing, right-continuous, limx→–∞ F(x) = 0, and
limx→∞ F(x) = 1 with support on X, i.e. PF(X) =

∫
X dF(x) = 1.

Expectation Operator: EF [·]

• F : set of all cumulative probability functions on X
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First-Order Stochastic Dominance

Ranking of distributions s.t. every EU maximiser agrees:

Definition

A distribution F first-order stochastically dominates (FOSD) a distribution G, denoted
by F ≥FOSD G iff, for all nondecreasing functions u : X → R, EF [u] ≥ EG[u].

Theorem

∀F,G ∈ F , F ≥FOSD G ⇐⇒ ∀x ∈ X, F(x) ≤ G(x).

Remarkably simple characterisation of such strong property!
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First-Order Stochastic Dominance

Theorem

∀F,G ∈ F , F ≥FOSD G ⇐⇒ ∀x ∈ X, F(x) ≤ G(x).

Proof
=⇒ :
• ∀a ∈ R, define ua(x) := 1{x≥a}; 1A = 1 if A is true, and 0 if ow.

• ua nondecreasing ∀a ∈ R.

F ≥FOSD G =⇒ EF [ua] ≥ EG[ua] ∀a ∈ R

⇐⇒
∫
X
ua(x)dF(x) ≥

∫
X
ua(x)dG(x) ∀a ∈ R

⇐⇒
∫
x≥a

1dF(x) ≥
∫
x≥a

1dG(x) ∀a ∈ R

⇐⇒ 1 – F(a) ≥ 1 – G(a) ∀a ∈ R

⇐⇒ F(a) ≤ G(a) ∀a ∈ R.
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First-Order Stochastic Dominance

Theorem

∀F,G ∈ F , F ≥FOSD G ⇐⇒ ∀x ∈ X, F(x) ≤ G(x).

Proof

⇐= : A small detour
We’ll use a result in statistics called the inverse transform method.
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Inverse Transform Sampling

Definition

∀F ∈ F , the generalised inverse (or quantile function) is given by QF(τ) := min{x ∈ R |
F(x) ≥ τ}, ∀τ ∈ (0, 1).

Proposition (Inverse Transform Sampling)

Let F ∈ F and X ∼ F. Then, X d= QF(U), where U ∼ Unif(0, 1).

Simulating uniform rv is convenient and computationally efficient =⇒ computationally
efficient way of simulating any rv!
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Inverse Transform Sampling

Definition

QF(τ) := min{x ∈ R | F(x) ≥ τ}, ∀τ ∈ (0, 1).

Proposition (Inverse Transform Sampling)

Let F ∈ F and X ∼ F. Then, X d= QF(U), where U ∼ Unif(0, 1).

Proof

WTS P(QF(U) ≤ x) = F(x).
(1) QF is nondecreasing:

F is nondecreasing =⇒ ∀τ
′ ≥ τ, {x ∈ R | F(x) ≥ τ

′} ⊆ {x ∈ R | F(x) ≥ τ} =⇒
QF(τ) ≤ QF(τ′).

(2) QF(F(x)) ≤ x ∵ ∀QF(F(x)) = min{y : F(y) = F(x)} and x ∈ {y : F(y) = F(x)}.

(3) Take τ ∈ (0, 1), x ∈ R : τ < F(x). Then,

τ < F(x) =⇒ QF(τ) = min{y ∈ R | F(y) ≥ τ} ≤ min{y ∈ R | F(y) ≥ F(x)} = QF(F(x)) ≤ x.
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Let F ∈ F and X ∼ F. Then, X d= QF(U), where U ∼ Unif(0, 1).

Proof

WTS P(QF(U) ≤ x) = F(x).
(1) QF is nondecreasing. (2) QF(F(x)) ≤ x. (3) τ < F(x) =⇒ QF(τ) ≤ QF(F(x)) ≤ x.
(4) As QF(τ) ≤ x =⇒ τ ≤ F(x) (QF nondecreasing), then

{U < F(x)} ⊆ {QF(U) ≤ x} ⊆ {U ≤ F(x)}

⇐⇒ P(U < F(x)) ≤ P(QF(U) ≤ x) ≤ P(U ≤ F(x))

⇐⇒ F(x) ≤ P(QF(U) ≤ x) ≤ F(x).
□
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First-Order Stochastic Dominance

Theorem

∀F,G ∈ F , F ≥FOSD G ⇐⇒ ∀x ∈ X, F(x) ≤ G(x).

Proof

⇐= : Back to characterising FOSD. Fix u, define quantile functions QF and QG.

F(x) ≤ G(x), ∀x ∈ X =⇒ (F(x) ≥ τ =⇒ G(x) ≥ τ)

=⇒ {x ∈ X | F(x) ≥ τ} ⊆ {x ∈ X | G(x) ≥ τ}

=⇒ QF(τ) ≥ QG(τ).

F(x) ≤ G(x), ∀x ∈ X =⇒ QF(z) ≥ QG(z), ∀z ∈ (0, 1)

=⇒ u(QF(z)) ≥ u(QG(z)), ∀z ∈ (0, 1) as u nondec

=⇒
∫
[0,1]

u(QF(z))dz ≥
∫
[0,1]

u(QG(z))dz

⇐⇒
∫
X
u(x)dF(x) ≥

∫
X
u(x)dG(x) inverse transform sampling

⇐⇒ EF [u] ≥ EG[u]. □
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Monotone Likelihood Ratio Order
Restrict attention to distrib. admitting either (i) density f or (ii) that have discrete

support with pmf f

Definition

Let F,G ∈ F s.t. (i) either both admit a density, or (ii) both have discrete support. F
monotone likelihood ratio dominates G (F ≥MLR G) iff f(x)/g(x) is nondecreasing in x.

Proposition

Let F,G ∈ F s.t. (i) either both admit a density, or (ii) both have discrete support.
F ≥MLR G =⇒ F ≥FOSD G.

Proof

(1) f(x)g(y) ≥ f(y)g(x)∀x ≥ y =⇒ (a) f(x)G(x) – F(x)g(x) ≥ 0 and
(b) (1 – F(x))g(x) – f(x)(1 – G(x)) ≥ 0 ∀x.

(2) Note (a) f(x)G(x) – F(x)g(x) ≥ 0 =⇒ f(x)
g(x) ≥

F(x)
G(x) and

(b) (1 – F(x))g(x) – f(x)(1 – G(x)) ≥ 0 =⇒ f(x)
g(x) ≤

1–F(x)
1–G(x) .

(a) and (b) =⇒ 1–F(x)
1–G(x) ≥

F(x)
G(x) ⇐⇒ (1–F(x))G(x) ≥ F(x)(1–G(x)) ⇐⇒ G(x) ≥ F(x) ∀x.
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Monotone Likelihood Ratio Order

Proposition

Let F,G ∈ F s.t. (i) either both admit a density, or (ii) both have discrete support.
F ≥MLR G =⇒ F ≥FOSD G.

MLR is in a sense a minimal condition so that FOSD is preserved under Bayesian
updating — very convenient property (see exercise)
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Second-Order Stochastic Dominance

Definition

For F,G ∈ F , F second-order stochastically dominates (SOSD) G (F ≥SOSD G) iff
EF [u] – EG[u] ≥ 0 for all nondecreasing, concave functions u : R → R, such that
EF [u] – EG[u] is well-defined and

∫ 0
–∞ u(x)dF(x),

∫ 0
–∞ u(x)dG(x) > –∞.

Restricting F,G to have bounded support, then
∫ 0
–∞ u(x)dF(x),

∫ 0
–∞ u(x)dG(x) > –∞

Gonçalves (UCL) 7. Stochastic Orders 12



Second-Order Stochastic Dominance

Definition

For F,G ∈ F , F second-order stochastically dominates (SOSD) G (F ≥SOSD G) iff
EF [u] – EG[u] ≥ 0 for all nondecreasing, concave functions u : R → R, such that
EF [u] – EG[u] is well-defined and

∫ 0
–∞ u(x)dF(x),

∫ 0
–∞ u(x)dG(x) > –∞.

Restricting F,G to have bounded support, then
∫ 0
–∞ u(x)dF(x),

∫ 0
–∞ u(x)dG(x) > –∞

Gonçalves (UCL) 7. Stochastic Orders 12



Second-Order Stochastic Dominance

Definition

For F,G ∈ F , F second-order stochastically dominates (SOSD) G (F ≥SOSD G) ⇐⇒
EF [u] – EG[u] ≥ 0 for all nondecreasing, concave functions u : R → R, such that
EF [u] – EG[u] is well-defined and

∫ 0
–∞ u(x)dF(x),

∫ 0
–∞ u(x)dG(x) > –∞.

WT find unambiguous ranking for risk averse DMs
Better understand riskiness
Separate individuals according to attitudes toward risk

How does ≥SOSD compare with ≥FOSD? Which one allows for a finer comparison?
Which one is stronger?
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Second-Order Stochastic Dominance

Theorem

∀F,G ∈ F ′, F ≥SOSD G ⇐⇒ ∀x ∈ X,
∫ x
–∞ F(s)ds ≤

∫ x
–∞ G(s)ds.

Result has had troubled history; first version Hadar & Russell (1969 AER) and general
version Tesfatsion (1976 RES).

We’ll prove the result for the subset of distributions with bounded support F ′.

Gonçalves (UCL) 7. Stochastic Orders 14



Second-Order Stochastic Dominance

Theorem

∀F,G ∈ F ′, F ≥SOSD G ⇐⇒ ∀x ∈ X,
∫ x
–∞ F(s)ds ≤

∫ x
–∞ G(s)ds.

Result has had troubled history; first version Hadar & Russell (1969 AER) and general
version Tesfatsion (1976 RES).

We’ll prove the result for the subset of distributions with bounded support F ′.

Gonçalves (UCL) 7. Stochastic Orders 14



Second-Order Stochastic Dominance

Theorem

∀F,G ∈ F ′, F ≥SOSD G ⇐⇒ ∀x ∈ X,
∫ x
–∞ F(s)ds ≤

∫ x
–∞ G(s)ds.

Proof

Preliminaries: integration by parts:
∫ b
a u(x)dF(x) = F(b)u(b) – F(a)u(a) –

∫ b
a F(x)du(x).

Bounded support =⇒ choose x, x : F(x) = G(x) = 0 and F(x) = G(x) = 1
u defined on (x – ε, x + ε).
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Second-Order Stochastic Dominance

Theorem

∀F,G ∈ F ′, F ≥SOSD G ⇐⇒ ∀x ∈ X,
∫ x
–∞ F(s)ds ≤

∫ x
–∞ G(s)ds.

Proof
=⇒ :
• For a ∈ R, define ua(x) := 1x≤a(x – a); nondecreasing and concave

• Integration by parts:∫ a

x
ua(x)dF(x) –

∫ a

x
ua(x)dG(x)

= (F(a) – G(a))(a – a) – (F(x) – G(x))ua(x) +
∫ a

x
(G(x) – F(x))dx

=
∫ a

x
(G(x) – F(x)).
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Second-Order Stochastic Dominance

Theorem

∀F,G ∈ F ′, F ≥SOSD G ⇐⇒ ∀x ∈ X,
∫ x
–∞ F(s)ds ≤

∫ x
–∞ G(s)ds.

Proof Sketch

⇐= : Idea of the proof:
(i) Fix u and do a nice linear interpolation un of u over an n-evenly-spaced-point grid

on [x, x].

(ii) Show that, for any n, we can express un as a finite sum of positive affine transfor-
mations of functions in the family ua.

(iii) Show that as n ↑ ∞, un converges uniformly to u.

(iv) Use (ii) to show that
∫ x
–∞ F(s)ds ≤

∫ x
–∞ G(s)ds∀x =⇒

∑Kn
i=1 EF [uxni ] – EG[uxni ] ≡

EF [un] – EG[un] ≥ 0∀n.

(v) Use (iii) and (iv) to show that 0 ≤ EF [un] – EG[un] → EF [u] – EG[u] ≥ 0.

(Filling in the blanks left as an exercise.)
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Mean-Preserving Spread

Definition

For F,G ∈ F , G is a mean-preserving spread of (MPS) F (G ≥MPS F) iff ∃ random

variables X, Y , and ε, such that Y d= X + ε, X ∼ F, Y ∼ G, and E[ε | X] = 0.

Properties of MPS

(i) G ≥MPS F =⇒ F ≥SOSD G, but the converse is not true in general.

(ii) F ≥SOSD G =⇒ EF [x] ≥ EG[x].

(iii) G ≥MPS F =⇒ EF [x] = EG[x] and VF [x] ≤ VG[x]. (Prove it)

(iv) F ≥FOSD G =⇒ F ≥SOSD G, but the converse is not true in general.

(v) ≥SOSD and ≥MPS are partial orders.
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Second-Order Stochastic Dominance in Rn

Results extend to more general spaces.

Definition

For F,G ∈ ∆(Rn). F is a second-order stochastically dominates (FOSD) G (F ≥SOSD G)
iffEF [u] ≥ EG[u] for all nondecreasing concave u : Rn → R, whenever both expectations
exist.

Theorem (Strassen 1965, Theorem 2.6.8)

Let F and G be distributions on Rn with bounded support. F ≥SOSD G if and only if
∃X ∼ F and Y ∼ G such that X ≥ E[Y | X] a.s.

Result provides a way to define a joint distribution H(x, y) such that the marginals over x
and y equal F and G and

∫
Rn yH(x, y)dy = E[Y|X = x] ≤ x.
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Mean-Preserving Spreads in Rn

Corollary

Let F andG be distributions onRn with bounded support. G is amean-preserving spread
of F if and only if F ≥SOSD G and EF [x] = EG[x].

Why do we care? +Information =⇒ MPS of beliefs!
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Background Risks

Often simplify comparison of lotteries X ∼ F and Y ∼ G.

In reality: background risks ε; right comparison is X + ε vs Y + ε

When background risks are significant, it may overwhelm limited risk in X in Y

Pomatto, Strack, & Tamuz (2020 JPE): study connection between (independent)
background risks and stochastic orders

Theorem

Let X and Y be random variables with finite variance.
(i) If E[X] > E[Y], then ∃ indep. random variable ε : X + ε ≥FOSD Y + ε.

(ii) If E[X] = E[Y] and V[X] < V[Y], then ∃ indep. random variable ε : X + ε ≥SOSD Y + ε.

Rationalises approximation of looking at expectation and variance in assessing assets
when facing significant background noise.

Furthermore: if E[X] > E[Y] and want everyone to prefer X to Y , can throw in some well
calibrated background noise.
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More on Stochastic Orders

Meyer and Strulovici (2012): ordering interdependence
useful for finance (valuing portfolios), empirical work (inputing data), measuring
alignment of preferences in decision-making in groups (e.g. voting), etc.

Kleiner, Moldovanu, and Strack (2021 Ecta) derive properties related to MPS and
leverage these to study auctions, delegation, and decision-making under uncertainty
(among others).

MCS with stochastic orders: distributional comparative statics in macro models, in
games, in information, etc. (Jensen 2018 RES)

Reference textbooks: Muller and Stoyan (2002), Shaked and Shanthikumar (2007).
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